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Abstract

The development of machine learning methods and their adaptation to clinical problems have enabled the
creation of new therapeutic approaches that lead to the application of engineering solutions to model multi-scalar
physiological systems in an integrated way, providing deep and comprehensive knowledge of how biological
systems work. Adaptive clinical decision support systems for precision medicine suffer from a problem of high
dimensionality, since they contemplate the adjustment of many parameters. This report presents the theoretical
study and the practical exploration of unsupervised learning techniques of features, as well as the revision of
clustering methodologies capable of handling large data. The qualities of traditional tandem approaches are debated
by evaluating their performance in synthetic and real data. The research carried out opens space for the creation of
new integrated strategies that combine the reduction of the space of variables with the stratification of the objects
to maximize the interpretability of the data and to facilitate their analysis. In this work an entropy-regularized
fuzzy model is incorporated into a clustering and disjoint principal component analysis method and is successfully
matched against other state of the art methodologies, showing improved intuition in the appreciation of the results
due to the color palette attributed to the observations based on their degrees of belonging to the respective groups.
Also presented in this report is a new hierarchical tool capable of cyclically uncover hidden information in the
deeper layers of the data by rearranging subspace data for re-evaluation of clusters.

Keywords: Machine learning, Multivariate statistics, High-dimensional data, Fuzzy cluster analysis, Principal
Component Analysis.

1. Introduction
Due to recent progress in data storage and acquisition,
an increasing number of databases are emerging, as
computerization in health care services and the amount
of available digital data grows at an unprecedented
rate [1]. Considering that the use of computer and
information technologies in health care services can
help achieve efficiency and effectiveness in diagnostic
decision making, cost economy, and better risk
management and strategic planning in a competitive
environment [2], it becomes increasingly important
to retrieve knowledge from these data repositories,
especially while health care organizations are facing a
major challenge on improving the quality of the service
delivered, while maintaining the costs affordable [1].

The rise of genomics and the accumulation of
heterogeneous amounts of biomedical data is inciting
the development of new systems-based approaches to
life sciences, creating a substantial need for flexible
data modeling and analysis tools to help retain useful
insights from the overwhelming size and dimension
of the obtained data. The computing mechanism of
distinguishing patterns in large data sets is denominated
data mining and involves methods crossing statistics,
machine learning and database systems. The process

encompasses the extraction of data patterns through the
use of intelligent methods with the goal of distilling
relevant information from a data set and transform it into
an interpretable structure for further use [3]. The use of
data mining techniques on clinical data has the potential
to improve decision making in diagnosis, find ways
of preventing some diseases, towards a better patient’s
care.

Personalized medical therapies hold the promise of a
tailored service and treatment based on information that
is patient-specific. Modeling complex pathologies like
cancer and contributing to this therapy’s optimization
constitutes a great challenge in systems medicine,
whose results are expected to have high social and
economical impact. In this context, biomarkers
information and indicators of disease progression can
lead to the identification of co-variables related to the
disease outcome, helping unravel relationships in the
input data space to diminish the complexity of the task at
hand and elucidate the intricate connections of different
types of epigenomic abnormalities.

2. Beyond Tandem Analysis
When it is thought that some of the features studied do
not contribute much to identify the clustering structure,
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or when the number of features is large, researchers
promote the application of discrete and continuous
models in a sequential manner to detect non-observable
dimensions that summarize the information available in
the data set.

This operation frequently consists in performing PCA
before applying a clustering algorithm on the scores
of the objects on the first components. This kind of
approach was firstly named "tandem analysis" by Arabie
and Hubert and was already disputed by De Sarbo et
al. [4] because the dimensions identified by feature
extraction/selection techniques may not necessarily help
us to understand the group structure of the data, possibly
obscuring and masking the taxonomic information in
the process.

2.1. Tandem Analysis

An example where the inclusion of irrelevant features
potentiates the masking of the groups’ structure is
showcased because it may help to clarify some of
the problems brought to light here. In Fig. 1,
42 objects are plotted on two variables spread out as
well-defined irregular hexagonal structures symbolizing
three different classes. In this example, the objects were
also described by other four noise random variables
generated by a normal distribution with 0 mean and
variance 6. The new 42 × 6 matrix is partitioned using
the k-means clustering algorithm and the results who
identify the group membership of all observations are
illustrated by their classification from 1 to 3.

Figure 1: K-means classification of 42 objects described by six
variables, two of which determine the location of the points in the plot
(three classes) and the other four variables are randomly generated by
normal distribution.

The two-dimensional data set has been masked, if
not completely hidden, by the six-dimensional data set.
Namely, we can affirm the missclassification of 26 of the
42 objects. The use of a variable reduction technique to
extract the most relevant information may be deliberated
to reduce the masking effect in this scenario, but this
line of thought is not viable as can be seen in Fig. 2,
where PCA is applied on the six-dimensional space and
k-means is sequentially performed on the increasing
dimensions of the components’ scores. Note that in
the last three of these computations, in the scores of
the three, four and five principal components resulting

from the k-means algorithm, the location of the objects
in Subfigures 2b, 2c, and 2d is projected on the two
original variables that define the three well-separated
classes, while the class membership in these subfigures
correspond to the results of the respective tandem
analyses. The percentage of total variance explained
by the different solutions is showcased in Table 1. In
Fig. 2a, the first two components are not the original
ones that represent the well-defined and separable three
classes, which coincides in objects not being close to
those of the same class and being misslabeled in return.
Once we increase the number of principal components
to be considered when applying the clustering algorithm
the situation becomes slightly better, and the number
of missclassifications brought down from 26 to 10, in
Fig. 2d.

In our example, the substitution of the standardized
scores by those multiplied by the square roots of
the eigenvalues to avoid the case of distorted mutual
distances did not yield any improvements and proved to
be inefficient, having produced highly similar outcomes
to what was previously obtained in the case study using
2, to 5 components. We make the conclusion that the
poor performance of the tandem approach is not the
sourced in a of bad space representation, but instead
it originates from the simple fact that the principal
components are not upbringing the best achievable
agglomerations.

Table 1: Explained total variance and cumulative variance.

Components Eig % variance % cumulative

1 1.23 25.33 25.33
2 1.03 17.52 42.85
3 1.00 16.78 59.63
4 0.98 16.15 75.78
5 0.89 13.21 88.99
6 0.81 11.01 100.00

2.2. Factorial and Reduced K-means

Before advancing with any comparison to a sequential
tandem approach we explore the theoretical intricacies
of two integrated methods: Reduced K-means (RKM)
proposed by De Soete [5]; and Factorial K-Means [6].

2.2.1 Optimization of the Loss Functions

Both integrated approaches aim at identifying the best
partition of objects described by the best orthogonal
linear combination of variables following the least
squares criterion. A dual objective is attempted to
be achieved: optimal data synthesis of objects and
attributes occur simultaneous to variable selection in
cluster analysis, where the features that contribute
the most to select a label to all data points are
pinpointed. The methods deconstruct the data matrix
X into an object membership assignment matrix U, an
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(a) First two principal components (b) First three principal components

(c) First four principal components (d) First five principal components

Figure 2: Tandem analysis. K-means clustering computed on: (a) the first two components’ scores; (b) three components’
scores; (c) four components’ scores; (d) five components’ scores. Note: Classifications (b), (c) and (d) are represented on the
two variables that defined the three well-separated classes in Fig. 1.

orthonormal components’ score matrix A that expresses
the loadings of the variables, and a cluster centroid
score matrix Ȳ. In respect to clustering, these
initiatives are categorically identified as selection and
weighting approaches, being the fundamental difference
to other approaches in the same category that in RKM
and FKM the selection, weighting, and clustering
are done simultaneously, instead of being two very
distinct phases of the process. The distinction between
these modified k-means methods lies on the objective
functions considered by their models. The RKM loss
function to minimize is written as

FRKM (U,A, Ȳ) = ||X−UȲAT||2, (2.1)

and the model that is fitted by it is

X = UȲAT + ER, (2.2)

where ER is an (I × J) residual matrix. Whereas the
FKM minimizes the loss function

FFKM (U,A, Ȳ) = ||XAAT −UȲAT||2

= ||XA−UȲ||2. (2.3)

and the model that is fitted by it is

XAAT = UȲAT + EF , (2.4)

where EF is also an (I × J) residual matrix.
When the centroids are located in the full space

(Q = J) the methods trace back to the original k-means
algorithm. As is observable from (2.1), RKM minimizes

the sum of the squared distances between the observed
and the centroids located in a subspace of the data which
is spanned by the columns of A. From (2.3) it is
taken that FKM minimizes instead the within-clusters
deviance in the reduced space, i.e. the sum of the
squared distances between the centroids in the projected
space and the observed data points that are projected
onto the subspace in which the centers of the clusters
reside.

2.2.2 Finding the Ideal Data

From (2.3) it follows that the FKM’s loss function is
null if and only if XA = UȲ. We can consider the
data matrix X expressed in terms of the loadings matrix
A and A⊥, as

X = BAT + CA⊥T. (2.5)

Replacing (2.5) in XA = UȲ we find XA =
BATA + CA⊥TA = B = UȲ. Returning to the
ideal FKM data we have X = UȲAT + CA⊥T, and
evoking the general matrix C by E⊥, the full class is

X = UȲAT + E⊥A⊥T. (2.6)

Equation (2.4) reiterates the characteristics of the ideal
FKM data as being the one with null subspace residuals,
and having no particular restriction on the complement
residuals.

From (2.1) it follows that the RKM’s loss function
is null if and only if X = UȲAT. Equation (2.2)
illustrates the ideal RKM data as being the one with null
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subspace and complement residuals, thus encompassing
the domain of the ideal FKM data (the reverse does
not hold true, ideal FKM data does not guarantee ideal
RKM data).

2.3. Integrated Approach Application

Following the discussion of RKM and FKM,
performance is assessed by applying the methodology
to a simulated data already analyzed with tandem
analysis. Because we know that in the present situation
the agglomerations lie in a subspace of the full data
space, RKM and FKM are applied to the data, the
centroid specified to be located in a two-dimensional
subspace. The result exposed in Fig. 3 reveals structure
recovery and data classification failure of RKM.

Figure 3: Classification of 42 objects in a low-dimensional space
represented by the first two dimensions of the reduced k-means
analysis.

Turning to the FKM procedure, Table 2 introduces the
correlations between the model defined factors and the
six original features. Figure 2 represents the 42 objects
laid on the first two factors discovered and illustrates
the impact of the random noise generated variables is
drastically attenuated to the point of the well-separated
structure making its appearance again.

Table 2: Correlation between the first two dimensions of the factorial
k-means analysis and the six variables.

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6

Dim 1 0.9987 0.0432 -0.0235 0.0085 0.0101 0.0034
Dim 2 0.0440 -0.9958 0.0253 -0.0645 0.0112 -0.0381

Figure 4: Classification of 42 objects in a low-dimensional space
represented on the first two dimensions of the factorial k-means
analysis.

3. Clustering and Disjoint Principal
Component Analysis

When dealing with real data sets, there may be the need
to reduce not solely the dimension of the feature space,
but also to unveil some patterns among the objects. The
addressed methodology obtains the desirable scenario
for data interpretation and visualization by attaining non
overlapping clusters of objects and disjoint or sparse
classes of variables. It is heavily linked to RKM,
distinguishing itself due to constraints imposed on the
variable allocation matrix A. Here in CDPCA [7],
because there is a particular interest in defining factors
of maximal variance to specify the classification of the
features, the preferred approach is the maximization
of the between-class deviance in the reduced space, as
performed by reduced k-means.

Following the discussion of the clustering and
disjoint PCA model and the least-squares estimation
of the model, performance is assessed by applying the
methodology to a data set of small round blue cell
tumors.

3.1. Model Definition
The CDPCA model is the result of applying the k-means
algorithm on a data matrix to be able to represent
the objects by their centroid, and simultaneously
performing PCA on the transformed data matrix [7].
The main goal is to find a cluster of objects along a set
of centroids and at the same time partition the variables
into a set of disjoint components, while maximizing the
between cluster deviance in the reduced space of the
components. The model can be expressed by

X = UX̄ + E1 (K-means step on X) (3.1a)

= UȲAT + E1 + E2 (PCA step on UX̄) (3.1b)

= UȲAT + E (3.1c)

where E, E1 and E2 are (I × J) error matrices and
E = E1+E2. From Eq. (3.1c) one can write the CDPCA
model in order of E, E = X − UȲAT, and rewrite
the CDPCA problem into a minimization of the error
matrix minU,Ȳ,A ‖X−UȲAT‖2, where U is a binary and
row stochastic matrix, Ȳ is an object centroid matrix in
the reduced space and A is a column-wise orthonormal
matrix where each row contributes to only one column.
The transformation of the problem to the equivalent
maximization of the between cluster deviance in the
reduced space follows as ‖UȲAT‖2 = ‖UX̄A‖2 and
‖X−UȲAT‖2 = ‖X‖2 - ‖UȲAT‖2 [7].

The inclusion of the auxiliary matrix V, whose
nonzero entries identify nonzero elements of A, and
knowing Ȳ = X̄A, the CDPCA problem can be
tackled as a quadratic mixed continuous and integer
problem [8] given by the total variance of the data in
the reduced space maxF = ‖UȲ‖2, and constrained
to the allocation of I objects and P clusters, to the
allocation of J variables into Q disjoint components
and constrained to the PCA implementation. The
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maximum dissimilarity of centroids is represented by
the maximization of the objective function.

To solve the problem an iterative algorithm called
alternating least-squares algorithm (ALS) is proposed
in [7]. Figure 5 illustrates the algorithm’s progression.
In step 1, and after standardizing the data composed
of I objects and J variables, the objects are assigned
to P clusters following matrix U. Afterwards, matrix
Z is created by assigning each row of the data matrix
with the correspondent centroid. In step 2, matrix V
specifies the allocation of the J variables intoQ disjoint
components, and matrix A the CDPCA loadings. To
obtain these two matrices an iterative algorithm covers
row-by-row, column-by-column, matrices V and A in
order to maximize the objective function F .

At the end of one iteration the component score
matrix and the object centroid matrix in the reduced
space are found, and thus the I objects of the data
matrix are allocated into P clusters, displayed in a lower
dimensional space of Q disjoint components. In the
coming iteration the input matrix makes its appearance
in the form of Y. The algorithm is interrupted after
assessing the solutions and checking if the difference
between Fk and Fk+1 is smaller than a specified
tolerance threshold.

Figure 5: The two basic steps of one iteration of the Alternating
Least-Squares algorithm for performing CDPCA (extracted from [8]).

Since F is bounded above the output of each iteration
will converge to a stationary point - at least a local
maximum of the problem [7]; the algorithm can then
be considered an heuristic and thus, to achieve a
global maximum, several distinct initializations of the
allocations’ matrices U and V should be considered.

3.2. Algorithms

In this section the algebraic features of the algorithm are
further elaborated.

3.2.1 Initialization

At the beginning, the data matrix X is standardized
and the parameters to perform CDPCA are initialized.
The original variables belonging to the q-th CDPCA
component are identified by the nonzero elements of the
q-th column of V0. These elements will be considered
in the PCA subproblem to obtain the nonzero elements

of the q-th column of A0 that correspond to the first
principal component obtained from PCA applied on
the submatrix W(q)

0 . This submatrix is extracted from
the centroid-based data matrix where each object is
identified by the corresponding centroid, Z0 = U0X̄0,
and restricted to the original variables assigned into
the q-th column of V0. Thus, the q-th column of A0

provides the direction vector with maximum variability
amongst the centroids in the subspace defined by the
original variables assigned to the q-th column of V0.

3.2.2 General Iteration

After performing the initialization steps, at the
beginning of the (k + 1)-th iteration, the matrices X̄k,
Vk, Ak and Ȳk are all known. Making Xk+1 the
result given by one run of the K-means algorithm on
the score matrix Yk = XAk starting from the object
centroid matrix Ȳk in the reduced space. These steps are
repeated while there are empty clusters. At the end of
the first step of the general iteration every single cluster
should be assigned with at least one object. If not then
half the objects on the biggest cluster are assigned into
one of the empty clusters.

To update matrix Vk that specifies a partition of
the original variables into Q disjoint components, each
original variable is evaluated to find the component that
maximizes the objective function F . The first row
of Vk is updated by detecting for which column the
allocation of nonzero elements achieves better results in
maximizing F . For the first variable in Vk+1 the best
component is selected by solving Q PCA subproblems
associated with W(q)

k+1. In the q-th PCA subproblem the
first principal component is calculated determining the
update of the q-th column of Ak+1, and the centroid
matrix in a reduced space, and the objective function
value can be calculated by Ȳk+1 = X̄kAk+1 and Fk+1 =
tr((Uk+1Ȳk+1)T Uk+1Ȳk+1.

The same rationale is repeated for the following
rows of Vk making Vk+1 update row-by-row. Taking
into account the J original variables to obtain Vk+1

and Ak+1, (J × Q) subproblems are solved. In each
subproblem, a subspace of variables is considered and
the best direction with maximum explained variability
is obtained performing a PCA step, leading to a
maximization of the between cluster deviance given by
Fk+1/‖Yk+1‖2. These attributed components aren’t
sorted in a traditional, decreasingly way, and an
additional step of rearranging the output into a classical
form of representation is done.

3.3. Empirical Examples

The clustering and disjoint PCA has been applied to a
real data set describing Small Round Blue Cell Tumors
(SRBCT) of a childhood cancer study by Khan et al. [9]
and takes into account microarray experiments to show
the performances of the methodology.
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The gene expression data1 originally described the
genomic information of 88 individuals. From those 88
examples five were cases of non-SRBCT occurrences
and were removed from the testing samples as we which
to only study subtypes of the same disease. The data
included an evaluation of 2308 genes and encompassed
29 cases of Ewing sarcoma (EWS), categorized as 1, 11
cases of Burkitt lymphoma (BL), categorized as 2, 18
cases of neuroblastoma (NB), categorized as 3, 25 cases
of rhabdomyosarcoma (RMS), categorized as 4.

Prior to performing tandem analysis the variables
were standardized on the columns representing the 2308
genes. The analysis was carried out computing the
first principal components and classifying patients on
the basis of first 21 component scores. The results
are shown in Fig. 6. The k-means algorithm was run
on the first two PCA starting from random partitions.
It was necessary to run it for a large number of
initial random starts for the presence of several local
optima (optimal solution after 103 runs). The first
two components explain a mere 10% and 8% of the
total variance. Both the first and second dimensions
of PCA are characterized by a rather homogeneous
contribution of a series of variables, and present a
negligible percentage of interrelations contribution. The
between cluster deviance of the solution equalled to
28.8% of total deviance and 23 correct predictions.

Figure 6: Tandem analysis results on the SRBCT dataset.
Overlapping clusters make interpretation more difficult or impossible.

The classification into four groups is not at all
intuitive due to the presence of overlapping points.
With the exception of the first cluster whose boundaries
could be easily delimited without clashing against the
other partitions, the remaining three clusters all seem to
intercept each other.

The results of the CDPCA are reported in Fig. 7.
The optimal solution was found 2 times in the 250
runs, the algorithm converging after between 9 iterations
(tolerance of 10−3). The two components of the
CDPCA explain double the variance of PCA, albeit
presenting a low value nonetheless (9% and 7%,
respectively).

Despite the fact that the components of CDPCA
possess rather consistent low scores like what was
witnessed in the PCA components, the disjoint PCA

1See http://research.nhgri.nih.gov/microarray/Supplement/.

Figure 7: Clustering and disjoint PCA results on the SRBCT
dataset. Numbers above points showcase themissclassifications of
even classes, the ones that casted the most doubts in determining the
corresponding cluster.

clearly shows more homogeneous clusters (between
cluster deviance of CDPCA is 83% of total deviance.

In this difficult dataset the classification on the two
dimensions defined by the CDPCA model is similar
to the one of the tandem analysis with 36 correct
predictions. The 43.4% accuracy translates a less than
optimal subspace recovery and can be explained by the
elliptical cluster shape the algorithm tends to attribute
not corresponding to the real pattern present in the data,
and due to the possible presence of outliers that disturb
the classification process.

4. Integrated Methods for Increase in Data
Interpretability

After insurging against the use of tandem techniques,
and reviewing the properties of the algorithm to be
extended, two new methods are proposed. The first
method developed is named Relaxed Clustering and
Disjoint Principal Component Analysis, or RCDPCA,
stemming from the inclusion of a fuzzy model in
the object assignment phase of CDPCA. The second
method is denominated Nested Clustering and Disjoint
Principal Component Analysis, or NCDPCA, a new
pipeline whose purpose is to bridge the gap between
integrated approaches and uncovering information
hidden in sublayers of data by maximizing the between
cluster deviance of the cluster and subclusters instances.

4.1. Relaxed CDPCA

The RCDPCA algorithm addresses the possibility
of an object having characteristics associated with
one or more clusters by instilling a fuzzified object
stratification at each step of the iterative and converging
process. It tries to circumvent hiccups of the k-means
discussed in the previous section by attempting to
overcome poor performance on badly delineated or
overlapping groups, or on symmetric data. The
algorithm maximizes its objective function by virtue of
a greedy search and retains the properties of the work
introduced in Section 3.

In the genome and DNA data studied in the
development of these methods the focus was not on
assuming or wishing to test a theoretical model of
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latent factors causing the observed variables and thus
factor analysis was not considered. Instead, and with
the interest of simply reducing the correlated observed
variables to a smaller set of important independent
composite variables, the use of PCA as the solution for
the dimensionality reduction problem is retained, as it is
an adequate approach to the task at hand.

4.1.1 Understanding Soft Clustering

Soft or fuzzy clustering allows gradual memberships
of data points to clusters, providing the flexibility
to express data point that can belong to more than
one cluster. These membership degrees offer a finer
degree of detail of the data model by expressing how
ambiguously/definitely a certain point xi should belong
to a certain cluster Cp. Constraints guarantee that no
cluster is empty, and states that the sum of membership
degrees must be one for each xi (each datum receives
the same weight in comparison to all other data, making
the partitions exhaustive). The combination of the
two conditions imply that no cluster can contain full
membership of all data points and that membership
degrees for a datum resemble probabilities of being
member of its own cluster.

The fuzzy clustering criterion we discuss generalizes
the within groups sum of square errors function initially
reported by Dunn in [10] as an algorithm akin to hard
c-means,

Jf (U, ȳ) =

I∑
i=1

c∑
p=1

(uip)m(dip)2, (4.1)

where (dip)2 = ||xi − ȳp||2, and weighting exponent
m belongs in [1,∞[. Because the terms of Jf are
proportional to (dip)2, it is a squared error clustering
criterion, and its least-squared error stationary points
are solutions of minMfc×Rcp{Jf (U, ȳ)}. When m
approaches its maximal value the only optimal pair for
Jf is (Ū, µ) = (centroid of Mfc, centroid of X), and
Jf → 0. Above all, the larger m is the "fuzzier" are the
membership assignments; and contrariwise, as m → 1,
the fuzzy c-means solutions become hard. The choice of
m necessary to implement fuzzy c-means controls the
extent of membership sharing between fuzzy clusters
in X in the form of a weighting exponent; its optimal
choice is however not supported by any theoretical
basis.

4.1.2 Addressing the Artificial Parameter

It is needless to say that the FCM method casts itself as a
wondrous method mainly due to the introduction of the
magical number m, but certain questions arise. What
is the physical meaning of the parameter m? And what
valid criterion can be used to decide the membership
assignments?

To shed light upon this questions the notion of
Maximum-Entropy Inference (MEI) is introduced: an
unbiased inference method provided by information
theory, more strictly, Shannon’s concept of "amount
of information" [11] for ill-defined problems on the
basis of the given information. The MEI problem’s
structure is one of finding a probability assignment
or membership function uip which avoids bias while
agreeing with whatever information is given. Defining
the local loss function as the within-group sum of
squared error the algorithm is set to minimize the
objective function

I∑
i=1

c∑
p=1

uip(dip)2 + γ

I∑
i=1

c∑
p=1

uip lnuip, (4.2)

where uip denotes the grade of membership of the i-th
data pairs in the p-th cluster.

The functional (4.2) can simultaneously minimize the
within cluster dispersion as it forces uip to minimize
the weighted sum of squared distances, and maximize
the negative weight entropy to determine clusters to
contribute to the association of objects. The first
term represents the cost function of the standard
k-means algorithm, and is complemented by a second
term that forces the maximization of the entropies of
the distributions over the clusters described by uip.
This way uip naturally distances itself from a crisp
assignment, which is the minimum entropy setup.

To maximize MEI the alternating minimization
procedure between membership matrix U and cluster
center matrix ȳ can be applied to (4.2), resulting in the
solutions

uip =
e−

d2ip

2σ2∑c
j=1 e

−
d2
ij

2σ2

, ȳp =

∑I
i=1 uipxi∑I
i=1 uip

∀ i, p,

where σ is the Lagrangian multiplier from the loss
function.

The entropy regularization allows us to avoid using
the artificial fuzziness parameter m, replaced by the
degree of fuzzy entropy γ, related to the concept of
temperature in statistical physics, 2σ2. An interesting
property and advantage of a membership regularization
approach is that the prototypes are obtained as weighted
means with weights equal to the membership degrees
(rather than to the membership degrees at the power of
m as is for the fuzzy k-means).

4.2. Nested CDPCA

As the discovery of disease subtypes via the exploration
of gene expression data using unsupervised clustering
methodologies is one of the most important research
areas in personalized medicine, one of the other
goals settles on producing new frameworks capable
of highlighting information hidden in inner layers of
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data. Taking inspiration in the automatization of the
classification of objects, NCDPCA allows to unearth
knowledge hidden in a secondary layer of data. The
method projects the integrated approach of CDPCA
in a cyclical manner, digging deeper and deeper into
the behaviors and sub-behaviors that the data points
characterize. In Fig. 8 a visual display of the cycle
focusing on two layers optimized by the same F is
provided. Firstly, we compute the first layer partitions
and sequentially advance and examine each individual
cluster originated in the first phase of the program.

Figure 8: Illustrative graphical display of the NCDPCA algorithm. In
this particular case, the first partition reveals six clusters represented
by different colors. In the second phase of the nested process three of
the clusters are reevaluated and further divisions can be retrieved for
analysis.

5. Results and Discussion
Cancer classification is intimately connected to cancer
treatment and enhancements in this area contribute
significantly to advances in patient recovery processes.
The main challenges of cancer treatment were
always summed as the creation of target therapies
to pathogenetically distinguish tumor types, and to
maximize the treatment’s efficacy and minimize its
toxicity. Classically the focus has been on the study of
the morphological appearance of a tumor but the fact
that this analysis links similar appearances to different
clinical courses with different responses to therapy is
extremely limiting. For more tumors subclasses are
likely to exist but have yet to be properly defined by
molecular markers.

The disease’s classification has been hard to
accomplish partly because it has, on a historical
level, relied on specific biological insights, rather than
unbiased approaches for recognizing disorder subtypes.
In this section we rely on a systematic approach
based on global gene expression analysis through
simultaneous expression monitoring of hundreds of
genes using DNA microarrays, escaping the traditional
descriptive rather than analytical microarray studies,
and focusing on cell culture rather than primary
patient material, in which genetic noise can obfuscate
underlying reproducible expression patterns.

5.1. Leukemia Data

This clinical dataset contains gene expression data
from the leukemia microarray study accessible from
the R package multtest. The data contained 38
cases of human leukemias, 27 of which were acute

myeloid leukemia (AML), categorized as 1, and the
remaining 11 acute lymphoblastic leukemia (ALL),
categorized as 2. These two classes are particularly
relevant as their identification is critical for successful
remission; chemotherapy regimens for ALL therapy
differ significantly from AML (and vice versa), and
although recovery can be accomplished cure rates are
markedly diminished, and unwanted toxic effects are
realized.

After scaling and centering 3051 genes the
benchmark analysis was carried out computing the
first principal components and classifying patients on
the basis of 22 component scores addressing 82% of
the total variance. The results are shown in Fig. 9. The
k-means algorithm was performed on the first two PCA
starting from random partitions 500 times and found
the present optimal solution after 409 runs. The first
two components explain 15.6% and 9.4% of the total
variance. The between cluster deviance of the optimal
solution was equal to 13.6% of the total deviance.

Figure 9: Tandem analysis. Classification of leukemia patients
represented on the first two principal components.

The witnessed separation of the two groups is
forced. No overlap occurs by definition but the plane
responsible for the stratification appears to have a short
margin to the flexible classification boundaries - another
plausible explanation for the 8.4% of tumors correctly
attributed in this test (32 wrong labels).

Without knowledge on the conditions of the data, and
the disposition of the residuals, it is wise to attempt
an multitude of angles and methods to extract the
widest range of pertinent information. The integrated
approaches studied in Section 2 are revisited in this
experiment with a distinct parameter Q of 10 for RKM
and FKM. The between cluster deviance of the first
is 78.4% and its output’s sensitivity increase led to a
jump to 31.6% of good labeling (26 wrong decisions);
however, it’s visualization was not much superior to the
tandem approach and its image was omitted. In the
case of FKM, Fig. 10, a subspace was found such that
the data points were aligned and perfectly stratified into
two clusters (error function reached its lower limit and
100% within cluster deviance was observed) product of
an arbitrary response. The presence of all the variables
in the making of the new feature space culminated in
the imposition of null subspace residuals and resulted
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in the data points being tidied up into a speckle. The
end result is a 68.4% accuracy in classification, but an
inflexible model to further object introductions.

Figure 10: FKM clustering of leukemia patients in low dimensional
space.

The results of the Relaxed CDPCA are reported in
Fig. 11. The two components of the relaxed clustering
and disjoint PCA explain a low variance of 5.2% and
5.0%, respectively. Despite the fact that the components

Figure 11: Fuzzy model incorporated in CDPCA applied to leukemia
data. (left) Real classification with the blue color symbolizing the
first class and red the second; (right) RCDPCA classification with
brighter colors corresponding to less certain affirmations of class
memberships.

of RCDPCA denote similar variance explanation to
the one seen in the other processes, the disjunction of
the feature components clearly shows more distinctive
clusters and presents a between cluster deviance of
79% of total deviance. The classification on the
two dimensions defined by the model is a step above
of the other ones with 28 correct predictions. The
73.7% accuracy translates a less than optimal subspace
recovery and can be explained by the deficient definition
of Cluster 1 and the proximity of label 2’s.

These results demonstrate the feasibility of cancer
classification based solely on the monitoring of gene
expression and suggest a strategy for uncovering and
predicting other types of cancer divisions independently
of previous biological knowledge.

5.2. SRBCT Data Reevaluation

The objective of this test was to consolidate the
theoretical advances expressed in the previous chapter.

For that, we reevaluated the Small Round Blue Cell
Tumors dataset for further analysis, Fig. 12.

RCDPCA took 7 iterations to converge and brought
in a between cluster deviance of 83%, explaining 8.0%
and 6.6% of the total variance in the first and second
component respectively, while taking 334.3 seconds.
Assessing the color scheme we verify the confusion
resides mainly in the even number classes, 2 and
4, the classes that produced the biggest number of
missclassifications in Section 3. The incorporation of a
palette facilitates further analysis with the identification
of a "danger zone" in the subspace and additional
patients will be evaluated with more considerations.
Space is opened for a specific reevaluation of this area
using the Nested framework.

Figure 12: Relaxed clustering and disjoint PCA results on the SRBCT
dataset.

An application of a tandem PCA + fuzzy c-means
was performed but ommited as it translated all the issues
discussed in the previous sections. Even with adjusted
"fuzziness" parameters the doubts cast by this test are
too much to bare and the system evaluation was dimmed
unusable.

5.3. Hormonal Associated Cancer Discrimination

To evaluate the capacities of the nested methodology
a special data set was assembled, combining entrances
of several instances of breast and prostate cancer
(hormonal), and melanomas, all belonging to the TCGA
data repository. Three initial sets of collected cancer
data were united with 1204 and 547 cases of breast and
prostate cancer over 19660 genes, and 84 instances of
melanoma cases over 52746 genomes (after scaling and
intercepting common genes a (1835 x 19435) matrix
was left).

This configuration allowed for the direct appraisal
of whether this two tumorous types were identifiable
through genetic makeup analysis, and permitted the
appraisal of the clarity of the partition between
three tumor subtypes perhaps carrying similar global
pathogenetically characteristics.

In Fig. 13, the NCDPCA achieved a between cluster
deviance of 92.1% in an average of 4 iterations for the
first stratification of data and 86.0% after 6 iterations
in the following sublayer analysis, explaining almost
20% of the total variance with 2 components. The
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Figure 13: Nested clustering and disjoint PCA results on the TCGA
custom cancer dataset. (left) Real classification; (middle) first
layer partition; (right) and second layer partition represented in the
computed feature space. Note that not all objects are drawn (removed
to facilitate the perception of the clusters’ overlap).

colors of the middle and right subfigures do not have
any particular meaning and serve only as a visual
guide to better distinguish the separation of the second
sublayer displayed in initial layer’s feature space. These
results are extremely positive when reflecting on the
amount of genomic information condensed in this
figure. We see a proper evaluation of the first layer as
the non-hormonal melanoma cases are well-condensed
and far from the remaining points. The second layer
allows for the reinterpretation of the amalgam that is
shown above. The linear recombination of the variables
to best suit the inspection of the sublayer allowed the
labeling clarification of objects fairly overlapped with
one another. All the melanoma cases were precisely
estimated while, considering 1 as the positive label, the
second grouping witnessed a 96.5% of recall (fraction
of relevant instances that have been retrieved over
the total amount of relevant instances) and 91.3%
precision (fraction of relevant instances among the
retrieved instances), summarized in a 87.5% of correct
predictions.

In Fig. 14 we studied the same data obtained
under the same conditions but following a cyclical
tandem analysis path. The assessment continuously and
stressfully collided against an inability to separate even
the first obvious segregation. In the end, a between
cluster deviance of 33.8% occurred, with the first two
components explaining 29% and 10% of the variance.

Figure 14: Nested tandem analysis fails to separate hormonal from
non-hormonal tumors.

6. Conclusions
Results show that an integrated solution is an
effective mechanism to calculate a new linear subspace
arrangement of the feature space and to categorize data
in a reduced pace. We proposed the incorporation
of a fuzzy model in CDPCA, capturing the objects’
dynamics and considering the classification nuances
required for a fairer diagnosis of the situation. The
experimental data are in agreement with the initial
considerations. The accuracy of the model allows
for the definition of well stratified groups and a
more hassle-free perception of the behavior in the test
environment. The maximum-entropy approach of the
fuzzy model retains the characteristics of the previously
available solution adding flexibility and much needed
mathematical features that support the analysis, at the
cost of increased algorithmic running time. We also
proposed a technique used to find groupings in a
sublayer of the data. The solution achieved with this
system is improved over the obtained with the tandem
analysis. The general framework can be extended to
benefit any methodology and may be used in a wide set
of systems with differing characteristics.
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